Convergence rates for inverse Toeplitz matrix forms
نویسندگان
چکیده
منابع مشابه
Optimal Rates of Convergence for Estimating Toeplitz Covariance Matrices
Toeplitz covariance matrices are used in the analysis of stationary stochastic processes and a wide range of applications including radar imaging, target detection, speech recognition, and communications systems. In this paper, we consider optimal estimation of large Toeplitz covariance matrices and establish the minimax rate of convergence for two commonly used parameter spaces under the spect...
متن کاملInverse Toeplitz preconditioners for Hermitian Toeplitz systems
In this paper we consider solving Hermitian Toeplitz systems Tnx= b by using the preconditioned conjugate gradient (PCG) method. Here the Toeplitz matrices Tn are assumed to be generated by a non-negative continuous 2 -periodic function f, i.e. Tn =Tn[f]. It was proved in (Linear Algebra Appl. 1993; 190:181) that if f is positive then the spectrum of Tn[1=f]Tn[f] is clustered around 1. We prove...
متن کاملExplicit inverse of a tridiagonal k-Toeplitz matrix
We obtain explicit formulas for the entries of the inverse of a nonsingular and irreducible tridiagonal k−Toeplitz matrix A. The proof is based on results from the theory of orthogonal polynomials and it is shown that the entries of the inverse of such a matrix are given in terms of Chebyshev polynomials of the second kind. We also compute the characteristic polynomial of A which enable us to s...
متن کاملConvergence Rates for Inverse Problems with Impulsive Noise
Resumo/Abstract: We study inverse problems F (f) = g where the data g is corrupted by so-called impulsive noise ξ which is concentrated on a small part of the observation domain. Such noise occurs for example in digital image acquisition. To reconstruct f from noisy measurements we use Tikhonov regularization where it is well-known from numerical studies that L-data fitting yields much better r...
متن کاملConvergence rates for the Bayesian approach to linear inverse problems∗
Recently, the metrics of Ky Fan and Prokhorov were introduced as a tool for studying convergence in stochastic ill-posed problems. In this work, we show that the Bayesian approach to linear inverse problems can be examined in the new framework as well. We consider the finitedimensional case where the measurements are disturbed by an additive normal noise and the prior distribution is normal. Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1989
ISSN: 0047-259X
DOI: 10.1016/0047-259x(89)90055-9